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REGULARIZATION OF INVERSE PROBLEMS BY THE SCHEME OF PARTIAL 

MATCHING WITH ELEMENTS OF A SET OF OBSERVATIONS 

M. R. Romanovskii UDC 536.2:517.946 

The problem of determining the thermophysical properties by means of a discrete 
set of observations on the temperatures of the test object given with measure- 
ment errors is examined. 

The investigation of complex processes by using inverse problems has attracted consider- 
able attention lately. Their solution is associated with certain singularities, particularly 
the influence of errors in the initial data on the desired solution. As is known from [i], 
in such cases it is necessary to limit the domain of the allowable solutions and to match the 
measurement errors. Since a number of stabilizing functionals with the same problem can be 
set in correspondence and different norms for the deviation from the quantities observed can 
be selected, then it is interesting to determine those among them which will permit, for suf- 
ficiently general assumptions about the desired quantities, obtaining the most exact solu- 
tions under conditions of unimprovable observations for a broad range of measurement errors. 
In addition, the question of selecting the method of matching the observations occurs in the 
solution of applied ill-posed problems. One condition that establishes a relation between the 
accuracy of the solution and the measurement error [2] is used in the widespread problem, in 
practice, of restoring the thermal flux. This condition expresses the total error in all 
observations for measurements executed at several points. However, one condition can turn out 
to be inadequate to determine several parameters of a model that is characteristic for the in- 
verse coefficient problems, while taking total account of the errors results in a loss in 
accuracy of the solution of the inverse problem [3]. This paper is devoted to investigating 
the properties of the regularized solution of an inverse coefficient problem for the nonlinear 
heat-conduction equation as a function of the degree of limitation of the domain of admissible 
solutions, the form of the observation error estimate, and the methods of matching them. 

In the domain Q = {~, t):O < x < i, 0 < t < T} we examine the one-dimensional heat- 
conduction equation 

a~ O~ - ox a~ -~x + I (x, 0 (1) 

for which the initial and boundary conditions assuring uniqueness and stability in the deter- 
mination of the function u(x, t) for given values of the specific heat a~(u) and the heat 
conductivity an(U) and any T > 0 are assumed known. 

Let us also assume that at m points of space, and for each of n times of the domain Q 
observation results are given 

u~l=u(x,, t~)+efy, i =  1, m, ] =  1, n, (2) 

with a known magnitude of the deviation norm 

62=j  - (l~y-- uij)", i = i, ~, 
i=I 

(3) 
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o r  

A, = max lu~]- - .~;  I, / =  1, i, (4 )  
/el1 ,n] 

where u(x, t) is the temperature field of a rod with the thermophysical properties a~,~(u), 
6 i and A i are values of the measurement error at the points of observation {xi}i=~,m,. 

Error estimates in the form of (3) or (4) are the most widespread forms of measurement 
error estimates and can be obtained by known methods of statistical processing of the results 
of experiment. 

Let us pose the inverse coefficient problem for equation (i) to determine the functions 
az,a(u) from a given set of observations u 6, that has the prototype u satisfying (I). We 
use Tikhonov regularization by s particular matching scheme proposed in [3] for the solu- 
tion. According to this scheme, the solution desired is determined in a domain which should 
be bounded by a certain stabilizing functional ~[a], when matching the solution of the direct 
problem in each element i = l,m of the set of observations u 6. In this case, the assignlaent 
of measurement interference distribution laws is not required, but both quantitative and 
qualitative information about the properties of the desired quantities can be involved in 
addition, e.g., in the form of giving monotonicityconvexity sections and degrees of smooth- 
ness. As~,ignment of the observations in a whole series of points, for which the number needed 
at each point of observation x i rather than by the total error is a distinctive feature of 
such a regularization scheme from those proposed earlier, and permits improvement of the ac- 
curacy of the solution of the inverse problem [3]. 

Let us examine the following stabilizing functionals for (i): 

+ i dxdt, k 1, 

o. 

o~f~[a]= ,=,,, Lk--6~-/ \ at~ / j (5) 

u?7 

I L\ c/u" ] + k  du~' / J  
uO 

where p and q are the orders of the stabilizer; k, its class| uo=min tz@ and us=maxu~ 
i[ tl i ,[  tl ' 

limits of the segment of approximation. For a methodological study of the stabilizers intro- 
duced, it is assumed that vat u(x, t)C[uo, uN]. " Let us note that the stabilizer properties 

x, teQ 

were considered earlier in [4], but for another regularizatlon scheme. 

The order of the stabilizer is selected with the form of the desired functions ax,a(u) 
taken into account, which is determined by the composition of the a priori information about 
the object of investigation. In the absence of a sufficient quantity of such information, but 
under the assumption of the differentiability of a,,~(u), cubic splines can be recommended 
[5]: 

al l) ( u ) =  .,~z_3Ol @ ~,l-2 2 -~-#~&l+io3 +X&l+2J4 , u ~ [ u l - l ,  //l], 

where 

. r u C [ u z _ ,  uz], a~ ~ (.) = ~,_~sl  ~ + ~ S ~  ~ + ~z+~s~ ~ + .~z+~o~, 

s [ O =  (. ,  - . ) =  I2 ( . - . , _ , )  + h; ]  ; s~,~ _- ( . , -  ( .  - . ,_,)  . 
W W 

s~n = ( u - -  uz_~) ~ [2 (u~--  u) + h z l .  s~ 0 = ( u - -  hz_a ~ ( u - -  ua . 

hl = ul -- u/_a; I = i, N; N is a parameter of the approximation lattice, {u/}/=l--~; 
{Xi}i=l, 4(N+l) are the spline coefficients. Use of splines permits the introduction of an 
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irregular approximation mesh, provides a sufficient degree of smoothness together with locality 
of the approximation and allows for the possibility of using up to third-order stabilizers, 
inclusive. 

Reducing the stabilizing functional (5) to functions of the variable li, we obtain the 
following quadratic form: 

N 

/ = l  i= 1 , 2  ] = 1 , 2  

�9 i = 3 , 4  / = 3 , 4  

where 

co J?, l. : 

ff dPS~I) dPS} 0 
dvP dvP 

O~ 
( OPv~ 

Ql 

d~dT,, k = l ;  

[ Oov ~]+ 
+\&,' ]j 

+ 2(p--1) d2SlO dS}O [ ( Ov }2 Oav ( ) d r  2 dv O~ ] - ~  -1- - ~  ~" • 

] d sl [( a ,  
X ~ j @ ( p - - 1 )  dv 2 dv ~ I a~ ] q- 

(o )ot} 4:- ~ d~d~c, k = 2; 

f Z dPS~I) dPS}I) dr, k : 3 ;  
dr" dv p 

Ul--I 

QZ = { G  T) : Uz_ ,<~v(~,  7;)GH3" 

According to the regularization scheme selected, the solution of the inverse problem for the 
quadratic form a k )bl is represented as 

rain ~(k! p.q I~] (6 )  
~ E 4  (N-[-I) 

under the conditions 

~ �9 ~ 67 (7 )  ( u i i - - u . ) ~  ~, i = l . m ,  
]=1 

or 

m a x  lu~j - -  u i j l  ~< &, i = t ,  m ,  ( 8 )  
ie[1 .n] 

where uij = u(xi, tj) are values of the solution of the direct problem for (i) at given points 
of observation for the selected spline coefficients. 

The case when the class of functions to which the desired quantities belong can be 
broader, and the class of functions to which the selected cubic splines belong can be nar- 
rower, should be kept in mind in analyzing the properties of the solutions of the inverse 
problems. Taking ~his into account, we consider identification of the thermophysical proper- 
ties described by polynomials with powers less than as well as greater than three. 

To solve the model problem, we model the sample u ~ according to (2) at two points of 
observation xl = 1/3 and x2 -- 2/3 (m = 2) with the number of time measurements n = i0. We 
give the interference in the measurements by a random number tron-ducer with a normal distribu- 
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TABLE i. Identification of Linear Laws of Thermophysical Prop- 
erty Variation for o a = i0 -~ 

n i 

]= I  

m a x  tU~--Uijl 
je(l,n] 

Stabilizer 

u, N 

I,t o 

UN 

U 0 

a N 

S 
t to  

a N 

u o 

. (oPo 

0,098~ 

0'1031 

0,0602 

0,0875 

n~l,)  1 

0,00558 

0,00087 

0,00403 

0,00207 

7,4.10-~ 1,2.10-4 

9,3.10 -4 2,7.10 -5 

0,51-10-~ },27- I0 -7 

0,14.10 -~ L09.10-7 

0,0194 

O, 0072 

,98.10- 

), 0024 c 

oG 

0,00731 

O, 00089 

3,1.10-8 

2,65.10-8 

tion law and zero mathematical expectation in the function u(x, t), which is a solution of 
(i) with the homogeneous boundary conditions 

uI,=o = O, u lx=o = O, u lx=,  = 0 (9 )  

and th~ selection of ax = 1 + u, aa = (i + u)/2, f = i0, T = i as well as ax = i + u -- u 3 + 
uS/4, aa = i + 2u -- 3u 3 + u 5, f = 50, T = 0.I. For given values of the functions a:,a and f, 
the problem (I) and (9) was solved by an implieity iteration finite-difference scheme [6]. 
The function u(x, t) was found by interpolation by the Bessel formula in the mesh function 
with the nodes Wx• t = 50 • 100, and the integration in calculating the stabilizers was by the 
Simpson cubature formula [7]. The mathematical programming problems (6) and (7) and (6) and 
(8) were reduced by the penalty function method [8] to absolute minimization problems for 
whose solution coordinate by coordinate descent was used. The penalty function was selected 
in the form 

F G)  = o (k)o p,q [X] + 
i = 1  

where K i are the penalty coefficients, ri(k) is the residual by oonditions (7) or (8). Its 
minimization was realized according to the scheme 

[ z l  ') _ f (') - -  f > O, 

where ~i (s) are the search scales for the s-th step which diminish under the condition of two 
unsuccessful attempts in succession, and increase otherwise. 

Selection of the lattice parameter N is quite important in constructing an approximation 
by cubic splines. In real processes the desired dependences can be represented by complex 
functional laws whose nature is not known in advance. In this connection, the variations in 
the parameter N are dictated by the results of preliminary computations. Analysis of the 
values found here for the desired quantities and the residuals r i by the matching conditions 
can clarify the nature of the solution found, and therefore, indicate the further behavior of 
the parameter N. In the example under consideration, the parameter N = 5 was selected as the 
preliminary value. 

The results of identification of the thermophysical properties in the temperature segment 
u E [uo, u N] show that the accuracy of the solution of the inverse problem depends on the form 
of the matching with the errors in the experimental data, and is also associated with the form 
of the stabilizing functional. Utilizing the error estimate mode in form (8) as compared to 
mode (7) permits finding a more uniform approximation to the true values (Table i). Matching 
by the cubic norm (8) also results in satisfactory identification in the case of an increase 
in the variance of the interference (Table 2). However, it should here be kept in mind that 
the space defined by the cubic norm is not strictly normalized [7]; hence, the appearance of 
local minimums is possible in the solution of the problem (6) and (8), 
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Fig. i. Determination of linear laws of specific heat (a) and 
heat conductivity (b) variation for ~ = 0.01 and matching by the 
spherical norm (7); l) exact value; 2) ~ ;  3~ n (s). 4~ 
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6 
In all the cases considered, the solutions ~1,a, found by using the numerical methods 

elucidated above, satisfy the necessary condition for minimizing the stabilizing functional 
~[a 6] <~[~], as well as a matching condition of the form (7) and (8), whereupon r i < 0, i = 
i, m. Since an adequate model and exact values of the errors found by (3) and (4) were used 
in solving the inverse problem, the result of negative residuals then obtained in conditions 
(7) and (8) shows that in similar situations the matching conditions can reduce to the require- 
ment of satisfying the equalities r i = 0, i = i, m. 

The functionals (5) introduced are distinguished by the degree~ of constraint imposed on 
the domain of allowable solutions. Consequently, the functions ~,a found for the different 
stabilizers but under the same ma__tching conditions are distinctive in the accuracy of their 
approximation to the true values a~,a. The accuracy of the identification is improved with 
the rise in the stabilizer order to p = q = 2. A further increase in the order does not, in 
some cases, result in improvement in the accuracy of identification. The thermophysical prop- 
erties found are shown in Figs. 1 and 2 as a function of the form of the stabilizing function 
used. Let us note that the results obtained on the basis of using first- and second-order 
stabilizers differ significantly from each other. This difference is related to the kind of 
approximation used for the desired quantities. Since cubic splines belong to the class of 
twice differentiable functions, then the constraint on the domain of admissible solutions on 
the basis of the first derivative (p = q = i) should be weaker than the case of the second 
derivative (p = q = 2). If quadratic splines or other approximation methods were used, which 
assure the continuity of just the first derivative, then the results of using first- and second- 
order stabilizers would differ to a lesser degree. 

Comparing the solutions as a function of the class of stabilizers introduced shows that 
the first class, k = i, turns out to be best in the regularization scheme under consideration, 
i.e., a constraint on the domain of admissible solutions is realized best in the variable of 
the selected functional representation of the desired quantities with the variable domains of 
observation taken into account. The results obtained for the influence of the kind of sta- 
bilizing functional emphasize the value of using qualitative information about the smoothness 
of the desired quantities in solving inverse coefficient problems and show the inadequacy of 
constructing a stable solution requiring just matching the errors in the initial data. 

The initial value N = 5 taken for the parameter turns out to be sufficient to determine 
the regularized solution in both the linear and nonlinear cases of the dependence of the ther- 
mophysical properties on the temperature. Therefore, utilization of the proposed regulariza- 
tion schemes in combination with the spline approximation permit restoration of both simple 
and complex dependences for sufficiently general assumptions about the desired quantities. 

Let us examine how the passage to a total estimation of the measurement errors influences 
the accuracy of solving the inverse problem. For the case of nonlinear thermophysical proper- 
ties and observations for c= 0.i, utilization of the stabilizer ~(i) and a total estimation 

2 2  

by means of the cubic norm A=maxu~ --u~Jl would result in an increase in the error of the solution 
�9 , I ZJ 
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TABLE 2. Identification of Nonlinear Laws of Thermophysical Property Variation with Estimation 
by the Cubic Norm (8) 

Inter- 
f erence  

~ =  0,01 

o-----0,05 

~ = 0 , I  

/ "t, - "-, J ma.x] ~!_ ~ 
~'J I tei~" I 

1,3 % 

Stabilizer 

te Ar 

5 ~~ " 

u N j" (4-~i): e.. 

470 <3 

3,00248 I 0,00248 
i 

0,01926 I 0,01933 

"2,2 

0,00277 

0,01923 

0,00265 

0,01966 

0,01364 

0,00241 0,00272 

0,01927] 0,01924 

0,03097 10,01275 

I 

10,23134 25,6591[ 

J 
0,0849210,01953 

.q~3) I 

0,00249 

0,01949 

3,30794 

0,51674 

3,35023 

0,61832 

5 ,1% 

lO,3% 

u o 

u N 

u o 

a N 

lg o 

te N 

S < -Ol): ~= 
teo 

te N 

(a 6 - -  ~)~ du 

l* o 

0,54951 

0,4125~ 

0,69563! 

0,83274 

0,10718 

0,33741 

0,19471 

0,51841 

0,00536 

0,08369 

0,00572 

0,42038 

0,06127 

0,01435 

0,06372 31,5346 0,98113 

q(3) 
2,2 

0,00281 

0,01939 

0,i7426 

0,47748 

0,24301 

0,58633 

~(3) 
3,3 

0,00273 

0,01952 

0,01374 

0,06135 

0,01375 

0,06149 
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Fig. 2. Determination of nonlinear laws of specific 
heat (a) and heat conductivity (b) variation for o = 
0.05 and matching by the cubic norm (8): i) exact 
values; 2) ~(i); 3) ~(i); 4) ~(i) . 
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f(a~--6~)2du=3.4205, f(a~--a2)2du = 0.8004. Estimation by the total rms error 6=ZE(u~--~ij) 2 
u o uo i f 

would result in still greater errors. 

Therefore, the following deductions can be made. Selection of the method and the mode 
of the matching conditions is important in matching the inverse problem solution to the 
measurement error, i.e., the partial or total mode of taking account of the variance in the 
interference, the rms or uniform norm of the estimate of the deviations. However, just 
matching the measurement errors is insufficient for a satisfactory solution of the inverse 
problem and constraints must be imPOsed on the domain of admissible solutions. Weak regulari- 
ization can result in a loss in the accuracy of identification despite compliance with the 
matching conditions. The regularization schemes studied with partial matching in the elements 
of a set of observations permit obtaining solutions of the inverse problems with satisfactory 
properties for an increase in the interference variance, where the errors of the solutions do 
not exceed the errors of the initial data~ 

In conclusion, we note that the investigation performed shows the effectiveness of regula- 
arization by the scheme of partial matching, which can be utilized for the practical solution 
of many inverse problems with the use of the broadest class of mathematical models. 

NOTATION 

u(x, t), temperature field; ~:,a, desired quantities; a~,a, values found; f(x, t), source 
intensity; Q, domain of variation of the independent variables; u ~, set of observations; s, 
interference in the measurements; xi, points of observation; m, number of points of observa- 
tion; tj, times of the observations; n, number of times of observation; ~i, rms deviation; 
AiD maximal deviation; r i residuals according to the matching conditions; and ~2 interference 
variance. 
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